Inference with PyTorch
Here are the steps to use Galileo for Inference with a text classification model.
- 1.Initialize the Galileo project - Use the
dq.init
function to initialize the Galileo project. The function takes three arguments: the project type, the project name, and the run name. - 2.Log the inference data - Use the
dq.log_dataset
function to log the inference data. The function takes two arguments: the inference data and the split name. - 3.Set the class labels - Use the
dq.set_labels_for_run
function to set the class labels for the run. The function takes one argument: the names of the classes. - 4.Set the split to inference with
dq.set_split
- 5.Monitor the model - Use the
watch
function from the Galileo's PyTorch integration to monitor the model. The function takes two arguments: the model and the dataloader. - 6.Run the model on the data using the data loader
- 7.Finish the run - Use the
dq.finish
function to finish the run.

Once the training is complete in the console you select the inference dataset as your subset in the top right corner.

Last modified 1mo ago